Mechanical Energy Harvesting From Road Pavements Under Vehicular Load Using Embedded Piezoelectric Elements

Author:

Chen Yisheng1,Zhang He2,Zhang Yangyang1,Li Chunhua1,Yang Qian1,Zheng Hongyu1,Lü Chaofeng3

Affiliation:

1. Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China

2. Department of Hydraulic Engineering, Zhejiang University, Hangzhou 310058, China

3. Department of Civil Engineering, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Soft Machines and Smart Devices of Zhejiang Province, Zhejiang University, Hangzhou 310027, China; Soft Matter Research Center, Zhejiang University, Hangzhou 310027, China e-mail:

Abstract

Highways consume enormous electric power and therefore contribute to heavy economic costs due to the operation of auxiliary road facilities including lighting, displays, and health-monitoring systems for tunnels and bridges, etc. We here propose a new strategy of electric power supply for highways by harvesting mechanical energy from the reciprocating deformation of road pavements. A series of wheel tracking tests are performed to demonstrate the possibility of using piezoelectric elements to transform the mechanical energy stored in pavements due to vehicular load into electricity. An analytical electromechanical model is developed to predict the correlations between electric outputs and loading conditions in the wheel tracking test. A simple scaling law is derived to show that the normalized output power depends on the normalized loading period, location, and size of the piezoelectric device. The scaling law is further extended to a practical highway application according to the analogy between the wheel tracking test and a highway in an idealized condition of periodic vehicular load. It suggests that the output power may be maximized by tuning the material and geometry of the piezoelectric device under various conditions of speed limit and vehicle spacing. The present results may provide a useful guideline for designing mechanical energy-harvesting systems in various road pavements.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3