Experimental Results on Parametric Excitation Damping of an Axially Loaded Cantilever Beam

Author:

Ecker Horst1,Pumho¨ssel Thomas2

Affiliation:

1. Vienna University of Technology, Vienna, Austria

2. HTBLuVA St. Po¨lten, St. Po¨lten, Austria

Abstract

In various fields of engineering, e.g. aerospace applications, robotics or the bladings of turbomachinery, slender beam-like structures are in use and subject to free bending vibrations. Since such vibrations often are not wanted because they may degrade the performance or function of the structure, it is important to have a suitable means of vibration suppression available. In this experimental study we investigate a slender cantilever beam loaded with a controlled force at its tip. The force is always oriented towards the clamping point of the beam and generated by a piezo-actuator. Force control is based on an open-loop control without feedback from the structure. To enhance vibration suppression we take advantage of the additional damping observed when a periodic force modulation at a certain frequency is applied. From several theoretical studies it is known that parametrically excited systems show increased stability, and therefore enhanced damping properties, when the parametric excitation frequency is chosen near a certain combination frequency. Due to the almost axially applied force the cantilever beam system becomes a parametrically excited system and the effect mentioned can be observed. Numerous measurement runs have been carried out and vibration suppression as a function of the excitation frequency, the excitation amplitude and the beam initial deflection has been investigated. The results are in very good agreement with theoretical predictions and for the first time the numerical and analytical results obtained earlier are confirmed by experimental work.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Energy-Aware Control of Euler–Bernoulli Beams by Means of an Axial Load;IEEE/ASME Transactions on Mechatronics;2022-12

2. Reduced-order modelling of self-excited, time-periodic systems using the method of Proper Orthogonal Decomposition and the Floquet theory;Mathematical and Computer Modelling of Dynamical Systems;2014-01-28

3. Approximate Methods for Analysing Nonlinear Structures;Exploiting Nonlinear Behavior in Structural Dynamics;2012

4. Experimental Study on Parametric Anti-resonances of an Axially Forced Beam;Nonlinear Modeling and Applications, Volume 2;2011

5. Beneficial Effects of Parametric Excitation in Rotor Systems;IUTAM Symposium on Emerging Trends in Rotor Dynamics;2010-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3