Modeling Sustainability of Complex Systems: A Multi-Scale Framework Using SysML

Author:

Azevedo Kyle1,Bras Bert1,Doshi Siddharth1,Guldberg Tina1

Affiliation:

1. Georgia Institute of Technology, Atlanta, GA

Abstract

In this paper, we propose a framework to design and analyze sustainability within complex multi-scale systems. Systems that have large variability in temporal and spatial resolution are common in lifecycle analyses and sustainability studies. Unlike traditional problems in systems engineering, these systems are composed of numerous interacting layers, each intricate enough to be a complete system on its own. In addition, the goal of achieving an economically and environmentally sustainable system introduces new elements to the problem domain. To manage this complexity, the suggested methodology focuses on integrating existing modeling constructs in a transparent manner, and capturing structural and functional relationships for efficient model reuse. The Systems Modeling Language (OMG SysML™) is used to formally implement the modeling framework. To demonstrate the method, we apply it to a large scale multi-modal transportation network. Analysis of key network parameters such as emissions output, well-to-wheel energy use, and system capacity are presented in a case study of the Atlanta, Georgia metropolitan area.

Publisher

ASMEDC

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Leveraging MBSE to Analyze Reliability, Availability & Maintainability for System-of-Systems;2024 Annual Reliability and Maintainability Symposium (RAMS);2024-01-22

2. Summary, Critical Review and Outlook;Sustainable Production, Life Cycle Engineering and Management;2021-08-31

3. Model Based Engineering of Process Plants using SysML;Computer Aided Chemical Engineering;2016

4. System Lifecycle Management: Initial Approach for a Sustainable Product Development Process Based on Methods of Model Based Systems Engineering;IFIP Advances in Information and Communication Technology;2014

5. A system model for assessing vehicle use-phase water consumption in urban mobility networks;Energy Policy;2012-12

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3