Influence of Thermal Effects During Blade-Casing Contact Experiments

Author:

Millecamps Antoine1,Brunel Jean-Franc¸ois1,Dufre´noy Philippe1,Garcin Franc¸ois2,Nucci Marco2

Affiliation:

1. Laboratoire de Me´canique de Lille, Villeneuve D’ascq, France

2. Snecma Villaroche, Moissy-Cramayel, France

Abstract

In rotating machinery, notably in modern high efficiency compressors, a critical requirement for optimal performance consists in minimizing radial clearances between the rotating bladed disk and the casing. This solution significantly increases the risks of contact between rotating bladed disk and casing and may lead in specific conditions to catastrophic behavior (component failure, etc.). The physical phenomena and mechanisms involved in blade-casing contact interaction situations are still misunderstood. In order to highlight these mechanisms, specific experiments have been performed on an experimental multi-stage compressor of a turbojet with dedicated dynamic and thermal instrumentations. For all configurations tested, major damages are noticed: blades had cracks and the abradable coating of the casing was heavily machined. Results show that the blade failure refers to fatigue limit with first natural mode excitation of the blade. The paper is focused on the analysis of the successive stages of blade dynamic response before the failure. It is shown that this response is influenced by the variations of the blade-casing contact conditions. These conditions are linked to the thermomechanical behavior and wear of coating, illustrated by high thermal levels and non uniform wear profile. Coupling between thermomechanics, wear and dynamic has to be considered to highlight the transient mechanisms leading to the cases of blade failure.

Publisher

ASMEDC

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3