Development of Evolutionary Method for Optimizing a Roll Forming Process of Aluminum Parts

Author:

Park Hong Seok1,Anh Tran Viet1

Affiliation:

1. School of Mechanical Engineering University of Ulsan 93 Daehak-ro, Nam-gu, Ulsan, South-Korea 680-749

Abstract

This paper presents the development of the knowledge-based neural network (KBNN) and genetic algorithm (GA) in modeling and optimization of the roll forming (RF) process of aluminum parts. The idea of a KBNN using multifidelity finite element (FE) models was developed to model the mechanical behaviors of the aluminum sheet. Initially, the less costly but less accurate FE model was used to build the response surface functions for the knowledge path of the KBNN. After that, a small number of the more accurate but expensive finite element analysis (FEA) of the high fidelity FE model were utilized in a multilayer perceptron (MLP) neural network with the prior knowledge to produce the KBNN prediction results. Two powerful optimization algorithms, the Levenberg–Marquadrt (LM) and GA, were applied to train the KBNN. The trained KBNN was used to perform the parametric study for investigating the effects of process parameters on the part quality. After that, the optimization of the process parameters was carried out by employing the combination of the GA and KBNN. The optimization objective was minimizing the overall damage in the aluminum part while keeping the longitudinal strain and spring back angle less than allowable limits to prevent the existence of defects. The modeling and optimization results by using the KBNN and GA were compared with the results from other methods to prove the advantages of the developed one against others.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3