Dynamic Data-Driven Design of Lean Premixed Combustors for Thermoacoustically Stable Operations

Author:

Chattopadhyay Pritthi1,Mondal Sudeepta1,Bhattacharya Chandrachur1,Mukhopadhyay Achintya2,Ray Asok3

Affiliation:

1. Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 e-mail:

2. Department of Mechanical Engineering, Jadavpur University, Kolkata 700 032, India e-mail:

3. Fellow ASME Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 e-mail:

Abstract

Prediction of thermoacoustic instabilities is a critical issue for both design and operation of combustion systems. Sustained high-amplitude pressure and temperature oscillations may cause stresses in structural components of the combustor, leading to thermomechanical damage. Therefore, the design of combustion systems must take into account the dynamic characteristics of thermoacoustic instabilities in the combustor. From this perspective, there needs to be a procedure, in the design process, to recognize the operating conditions (or parameters) that could lead to such thermoacoustic instabilities. However, often the available experimental data are limited and may not provide a complete map of the stability region(s) over the entire range of operations. To address this issue, a Bayesian nonparametric method has been adopted in this paper. By making use of limited experimental data, the proposed design method determines a mapping from a set of operating conditions to that of stability regions in the combustion system. This map is designed to be capable of (i) predicting the system response of the combustor at operating conditions at which experimental data are unavailable and (ii) statistically quantifying the uncertainties in the estimated parameters. With the ensemble of information thus gained about the system response at different operating points, the key design parameters of the combustor system can be identified; such a design would be statistically significant for satisfying the system specifications. The proposed method has been validated with experimental data of pressure time-series from a laboratory-scale lean-premixed swirl-stabilized combustor apparatus.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3