A Convolutional Neural Network Model for Predicting a Product's Function, Given Its Form

Author:

Dering Matthew L.1,Tucker Conrad S.2

Affiliation:

1. Computer Science and Engineering, Penn State University, University Park, PA 16802 e-mail:

2. Engineering Design and Industrial Engineering, Penn State University, University Park, PA 16802 e-mail:

Abstract

Quantifying the ability of a digital design concept to perform a function currently requires the use of costly and intensive solutions such as computational fluid dynamics. To mitigate these challenges, the authors of this work propose a deep learning approach based on three-dimensional (3D) convolutions that predict functional quantities of digital design concepts. This work defines the term functional quantity to mean a quantitative measure of an artifact's ability to perform a function. Several research questions are derived from this work: (i) Are learned 3D convolutions able to accurately calculate these quantities, as measured by rank, magnitude, and accuracy? (ii) What do the latent features (that is, internal values in the model) discovered by this network mean? (iii) Does this work perform better than other deep learning approaches at calculating functional quantities? In the case study, a proposed network design is tested for its ability to predict several functions (sitting, storing liquid, emitting sound, displaying images, and providing conveyance) based on test form classes distinct from training class. This study evaluates several approaches to this problem based on a common architecture, with the best approach achieving F scores of >0.9 in three of the five functions identified. Testing trained models on novel input also yields accuracy as high as 98% for estimating rank of these functional quantities. This method is also employed to differentiate between decorative and functional headwear, which yields an 84.4% accuracy and 0.786 precision.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 22 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3