Affiliation:
1. Computer Science and Engineering, Penn State University, University Park, PA 16802 e-mail:
2. Engineering Design and Industrial Engineering, Penn State University, University Park, PA 16802 e-mail:
Abstract
Quantifying the ability of a digital design concept to perform a function currently requires the use of costly and intensive solutions such as computational fluid dynamics. To mitigate these challenges, the authors of this work propose a deep learning approach based on three-dimensional (3D) convolutions that predict functional quantities of digital design concepts. This work defines the term functional quantity to mean a quantitative measure of an artifact's ability to perform a function. Several research questions are derived from this work: (i) Are learned 3D convolutions able to accurately calculate these quantities, as measured by rank, magnitude, and accuracy? (ii) What do the latent features (that is, internal values in the model) discovered by this network mean? (iii) Does this work perform better than other deep learning approaches at calculating functional quantities? In the case study, a proposed network design is tested for its ability to predict several functions (sitting, storing liquid, emitting sound, displaying images, and providing conveyance) based on test form classes distinct from training class. This study evaluates several approaches to this problem based on a common architecture, with the best approach achieving F scores of >0.9 in three of the five functions identified. Testing trained models on novel input also yields accuracy as high as 98% for estimating rank of these functional quantities. This method is also employed to differentiate between decorative and functional headwear, which yields an 84.4% accuracy and 0.786 precision.
Subject
Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials
Cited by
22 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献