Design and Validation of a Knee Brace With Feedback to Reduce the Rate of Loading

Author:

Riskowski J. L.1,Mikesky A. E.2,Bahamonde R. E.3,Burr D. B.4

Affiliation:

1. Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47902

2. Department of Anatomy and Cell Biology, Indiana University School of Medicine, Indianapolis, IN 46202; School of Physical Education and Tourism Management, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202

3. School of Physical Education and Tourism Management, Indiana University-Purdue UniversityIndianapolis, Indianapolis, IN 46202

4. Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN 47902; Department of Anatomy and Cell Biology, and Department of Orthopaedic Surgery, Indiana University School of Medicine, Indianapolis, IN 46202; Department of Biomedical Engineering, Indiana University-Purdue University Indianapolis, Indianapolis, IN 46202

Abstract

The repetitive nature of walking can lead to repetitive stress and associated complications due to the rate of loading (ROL) experienced by the body at the initial contact of the foot with the ground. An individual’s gait kinematics at initial contact has been suggested to give rise to the ROL, and a repetitive, high ROL may lead to several disorders, including osteoarthritis. We present the design, development, and validation of a knee brace that provides feedback to the user during gait. The feedback consists of an auditory signal when the specific parameters of knee angle or tibial acceleration 50 ms prior to contact are exceeded. Nine women were recruited for the gait analysis, and the gait characteristics with and without the brace and feedback are analyzed. Our results indicate that using a knee brace with feedback can effectively change the gait kinematics used during walking, leading to a reduced ROL experienced at initial contact. Using a knee brace with feedback is a novel approach to gait retraining. Al-though the kinetics of how the subjects change in gait pattern is unknown, the reduced ROL experienced is significant and warrants further investigation.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3