Characterizing Designs Via Isometric Embeddings: Applications to Airfoil Inverse Design

Author:

Chen Qiuyi1,Fuge Mark1

Affiliation:

1. University of Maryland Department of Mechanical Engineering, , College Park, MD 20742

Abstract

Abstract Many design problems involve reasoning about points in high-dimensional space. A common strategy is to first embed these high-dimensional points into a low-dimensional latent space. We propose that a good embedding should be isometric—i.e., preserving the geodesic distance between points on the data manifold in the latent space. However, enforcing isometry is non-trivial for common neural embedding models such as autoencoders. Moreover, while theoretically appealing, it is unclear to what extent is enforcing isometry necessary for a given design analysis. This paper answers these questions by constructing an isometric embedding via an isometric autoencoder, which we employ to analyze an inverse airfoil design problem. Specifically, the paper describes how to train an isometric autoencoder and demonstrates its usefulness compared to non-isometric autoencoders on the UIUC airfoil dataset. Our ablation study illustrates that enforcing isometry is necessary for accurately discovering clusters through the latent space. We also show how isometric autoencoders can uncover pathologies in typical gradient-based shape optimization solvers through an analysis on the SU2-optimized airfoil dataset, wherein we find an over-reliance of the gradient solver on the angle of attack. Overall, this paper motivates the use of isometry constraints in neural embedding models, particularly in cases where researchers or designers intend to use distance-based analysis measures to analyze designs within the latent space. While this work focuses on airfoil design as an illustrative example, it applies to any domain where analyzing isometric design or data embeddings would be useful.

Funder

Advanced Research Projects Agency

National Science Foundation

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference70 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3