Design and Control of an Aerial Manipulator With Invariant Center of Gravity for Physical Interaction

Author:

Rong Yongfeng1,Chou Wusheng23

Affiliation:

1. Beihang University School of Mechanical Engineering and Automation, , No.37 XueYuan Road, HaiDian District, Beijing 100191 , China

2. Beihang University School of Mechanical Engineering and Automation, , No.37 XueYuan Road, HaiDian District, Beijing 100191 , China ;

3. Beihang University The State Key Laboratory of Virtual Reality Technology and Systems, , No.37 XueYuan Road, HaiDian District, Beijing 100191 , China

Abstract

Abstract The deployment of manipulators enhances the versatility and flexibility of unmanned aerial vehicles (UAVs) in aerial physical interaction tasks but also challenges their designs and controls due to variations in the center of gravity (CoG), moment of inertia, and reaction wrenches. This work presents a novel design of a two-degree-of-freedom dual-tool manipulator with invariant-center-of-gravity (ICoG) property. The ICoG conditions are strictly deduced, and a practical optimization-based parameter tuning method is proposed. A novel adaptive extended state observer (AESO)-based impedance control method is developed with actuator dynamics taken into account. The AESO can estimate and compensate for both the lumped disturbance, including the influences of moment-of-inertia variation and counter torque, and the unmeasurable states for the controller. In addition, a switching adaptive law is proposed to attenuate the peaking phenomenon under high observer gains. The impedance controller is designed using an auxiliary impedance tracking error to overcome the difficulty of the increased system order. The Lyapunov approach is used to evaluate the stability of the entire system. The proposed approach is implemented on a fully actuated hexarotor with a prototype of the ICoG manipulator. Comparative experiments are conducted to validate the effectiveness and advantages of the proposed design and control methods.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3