Flexure Hinge Design and Optimization for Compact Anthropomorphic Grippers Made via Metal Additive Manufacturing

Author:

Tschiersky Martin1ORCID,de Jong Jan J.1ORCID,Brouwer Dannis M.2ORCID

Affiliation:

1. University of Twente Chair of Precision Engineering, , Enschede 7500 AE , The Netherlands

2. University of Twente Chair of Precision Engineering, , Enschede, 7500 AE , The Netherlands

Abstract

Abstract Flexure-based grippers offer an attractive alternative to conventional grippers used in robotics and automation. However, most existing designs appear to suffer from insufficient range of motion, loadability, and support stiffness. This article presents an approach to obtain well-performing flexure hinges for compact anthropomorphic grippers made via metal additive manufacturing. We propose a flexure hinge architecture that achieves a high range of motion despite the challenging combination of a small design space, high Young’s modulus, and limited minimum feature size. Furthermore, we present an optimization procedure to generate suitable tendon-driven designs with high loadability. Using this framework, a flexure hinge with an outer diameter of 21.5 mm and range of motion of ±30 deg is synthesized. For the range of 0–30 deg, simulations show a lateral loadability of 52.5–18.6 N and lateral support stiffness of 12,309–11,130 N/m, determined at a gripper interface located 41.2 mm from the hinge pivot axis. Experiments confirm a loadability of at least 15.4 N and determined a stiffness of 8982 to 9727 N/m for same conditions. The results show that the flexure hinge architecture has large potential for a wide range of applications, while in combination with the optimization procedure, superior designs for tendon-driven grippers can be obtained.

Funder

Nederlandse Organisatie voor Wetenschappelijk Onderzoek

University of Twente

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3