Plasma Surface Modification of Carbon Electrodes for Polymer Electrolyte Fuel Cells (EFC 2005-86319)

Author:

Chiu K.-F.1,Hsieh M. Y.1

Affiliation:

1. Department of Materials Science and Engineering, Feng Chia University, 100 Wen Hwa Rd., Taichung 407, Taiwan

Abstract

Carbon electrodes are one of the key materials in polymer electrolyte fuel cells (PEFC), or proton exchange membrane fuel cells (PEMFC). The electrodes should allow water or water vapor, which is produced by the redox reactions, to flow out of the cells efficiently. In the meantime, the catalysis reactions are not interfered. In this study, the carbon electrodes for PEMFC have been modified in terms of the hydrophobic and hydrophilic properties by plasma irradiation. The process utilized inductively coupled plasma (ICP) driven by applying radio frequency (rf) power on an induction coil. A pure Ar, O2, and Ar∕O2 gas mixture were used as the plasma gas. Only one side of the sample has been treated. The material properties of the plasma treated and untreated carbon electrodes were investigated by Raman spectroscopy, Fourier transformed infrared spectroscopy (FTIR), and scanning electron microscopy (SEM). FTIR results show the plasma treatments effectively modified the functional groups on the carbon surface, and therefore the hydrophilic and hydrophobic properties of the surface. SEM and Raman spectra data suggested that the ion bombardment during plasma treatments alters the surface morphology and carbon bonding structures of the samples, which also result in a hydrophilic surface. The treated carbon electrodes were used as cathodes and have been packed with commercial carbon anodes and catalyst coated membrane to form 5cm×5cm fuel cells. The current-voltage polarization curves of these fuel cells were measured and compared. The test results show the feasibility of improving the cell performance by plasma treated electrodes. The feasibility of altering the hydrophobic and hydrophilic properties by plasma treatment has been demonstrated. The capillary effect due to the unbalanced hydrophilicity between the treated and untreated electrode surfaces may be responsible for the improved cell performance.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3