Cumulative Clamp Load Loss Due to a Fully Reversed Cyclic Service Load Acting on an Initially Yielded Bolted Joint System

Author:

Nassar Sayed A.1,Matin Payam H.1

Affiliation:

1. Fastening and Joining Research Institute, Department of Mechanical Engineering, Oakland University, Rochester, MI 48309

Abstract

The amount of clamp load loss due to a fully reversed cyclic service load is determined for a bolted assembly in which the fastener and the joint were both tightened initially beyond their respective proportional limits. The cyclic reversed load acts in a direction parallel to the bolt axis. During the first half of each cycle, the cyclic load acts as tensile separating force that increases the fastener tension further into the nonlinear range; it simultaneously reduces the joint clamping force. Thus, after the first one half of the cycle, the clamp load is reduced from its initial value due to the plastic elongation of the fastener. During the second half cycle, the cyclic load compresses the joint further into the plastic range; simultaneously, it reduces the fastener tension. Due to the permanent set in the compressed joint, the clamp load is decreased further at the end of the second half cycle of the service load. The cumulative clamp load loss due to the permanent set in both the fastener and the joint is analytically determined using a nonlinear model. Variables investigated in this study include the joint-to-fastener stiffness ratio, the ratio of the initial fastener tension to its elastic limit, and the ratio of the external force to its maximum tensile value that would trigger joint separation.

Publisher

ASME International

Subject

Computer Graphics and Computer-Aided Design,Computer Science Applications,Mechanical Engineering,Mechanics of Materials

Reference9 articles.

1. Handbook of Bolts and Bolted Joints

2. Bearing Friction Torque in Bolted Joints;Nassar;STLE Tribol. Trans.

3. The Tightening of Bolts to Yield and their Performance Under Load;Chapman;Trans. ASME, J. Vib., Acoust., Stress, Reliab. Des.

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3