Experimental and Numerical Study of NOx Formation From the Lean Premixed Combustion of CH4 Mixed With CO2 and N2

Author:

Fackler K. Boyd,Karalus Megan F.,Novosselov Igor V.,Kramlich John C.,Malte Philip C.1

Affiliation:

1. Department of Mechanical Engineering, University of Washington, Seattle, WA 98105

Abstract

This paper describes an experimental and numerical study of the emission of nitrogen oxides (NOx) from the lean premixed (LPM) combustion of gaseous fuel alternatives to typical pipeline natural gas in a high intensity, single-jet, stirred reactor (JSR). In this study, CH4 is mixed with varying levels CO2 and N2. NOx measurements are taken at a nominal combustion temperature of 1800K, atmospheric pressure, and a reactor residence time of 3 ms. The experimental results show the following trends for NOx emissions as a function of fuel dilution: (1) more NOx is produced per kg of CH4 consumed with the addition of a diluent, (2) the degree of increase in emission index is dependent on the chosen diluent; N2 dilution increases NOx production more effectively than equivalent CO2 dilution. Chemical kinetic modeling suggests that NOx production is less effective for the mixture diluted with CO2 due to both a decrease in N2 concentration and the ability of CO2 to deplete the radicals taking part in NOx formation chemistry. In order to gain insight on flame structure within the JSR, three dimensional computational fluid dynamic (CFD) simulations are carried out for LPM CH4 combustion. A global CH4 combustion mechanism is used to model the chemistry. While it does not predict intermediate radicals, it does predict CH4 and CO oxidation quite well. The CFD model illustrates the flow-field, temperature variation, and flame structure within the JSR. A 3-element chemical reactor network (CRN), including detailed chemistry, is constructed using insight from spatial measurements of the reactor, the results of CFD simulations, and classical fluid dynamic correlations. GRI 3.0 is used in the CRN to model the NOx emissions for all fuel blends. The experimental and modeling results are in good agreement and suggest the underlying chemical kinetic reasons for the trends.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3