Simulations of Metal Oxidation in Lead Bismuth Eutectic at a Mesoscopic Level

Author:

Tan Taide1,Chen Yitung1

Affiliation:

1. Department of Mechanical Engineering, University of Nevada, Las Vegas, NV 89154-4027

Abstract

The corrosiveness of lead bismuth eutectic (LBE), as an ideal coolant candidate in reactors and accelerator driven systems (ADSs), presents a critical challenge for safe applications. One of the effective ways to protect the materials is to form and maintain a protective oxide film along the structural material surfaces by active oxygen control technology. The oxidation of metals in LBE environment has been investigated numerically at a mesoscopic scale. A novel stochastic cellular automaton (CA) model has been proposed considering the transport of oxygen along the grain boundaries. The proposed mesoscopic CA model has been mapped with the experimental data. A parametric study was conducted in order to check the importance of the main explicit parameters of the mesoscopic model. The boundary condition at the far end of the specimen has been investigated for the CA model. The model has benchmarked with the analytical solution and with the previous work of a pure diffusion process, and significant agreement has been reached. The developed CA model can be used to solve diffusion problem.

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3