Manufacturing a Ceramic Turbine Rotor for a Compact Jet Engine

Author:

Leicht Bryan T.1,Bohan Brian T.1,Schauer Fred1,Kemnitz Ryan1,Rueschhoff Lisa M.2,Lam Benjamin2,Kemp James W.2,Costakis William2

Affiliation:

1. Air Force Institute of Technology, Wright-Patterson AFB , Dayton, OH 45433

2. Air Force Research Laboratory, Wright-Patterson AFB , Dayton, OH 45433

Abstract

AbstractCompact military-grade jet engines offer many potential applications, including use in remotely piloted vehicles, but can be expensive to use for research and development purposes. A study aimed at increasing the power and thrust output of an inexpensive commercial compact engine found a material limitation issue in the turbomachinery. To gain the additional power, hotter turbine inlet temperatures were required. This temperature increase exceeded the limit of current uncooled metal turbine rotors but could be achieved through turbine rotors made from ceramics, such as silicon nitride, which would allow an increase in the thrust and power output by a factor of 1.44. Current ceramic turbine manufacturing methods are costly and time-consuming for rapid prototyping, but recent breakthroughs in ceramic additive manufacturing have allowed for cheaper methods and faster production which are beneficial for use in research and development when designs are being rapidly changed and tested. This research demonstrated, through finite element analysis, that a silicon nitride turbine rotor could meet the increased turbine inlet temperature conditions to provide the desired thrust and power increase. Furthermore, as a proof of concept, an additively manufactured drop-in replacement alumina turbine rotor was produced for the JetCat P400 small-scale engine in a manner that was cost-effective, timely, and potentially scalable for production. This compact engine was used to demonstrate that a cost-effective ceramic turbine could be manufactured. At the time of publication, the desired ceramic material, silicon nitride, was not available for additive manufacturing.

Funder

Air Force Research Laboratory

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3