Integral Hydro-Bulge Forming Method of Spherical Pressure Vessels Using a Triangle Patch Polyhedron

Author:

Jing Yang1,Kong Chenghai2,Guan Jingchao1,Zhao Wei3,Zhao Xilu1

Affiliation:

1. College of Mechanical Engineering, Saitama Institute of Technology , Saitama 369-0293, Japan

2. Topy Industries Co., Ltd. , Aichi 441-8510, Japan

3. Weichai Global Axis Technology Co., Ltd. , Tokyo 107-0062, Japan

Abstract

AbstractThis paper proposes an integral hydrobulge forming (IHBF) method using a triangular patch polyhedron as the closed preform shell. When triangular flat parts are welded along the edges in sequence, triangular patch polyhedra are naturally formed. From the radius of the spherical pressure vessel, a design formula was derived to calculate the side lengths of the triangular flat plate parts. The water pressure, water volume, average strain of molding, and amount of springback after molding, which are necessary for implementing the IHBF for practical use, were also formulated. To verify the forming performance of the spherical pressure vessel using IHBF method, the finite element method was carried out, and a stainless-steel spherical pressure vessel with a thickness of 1.0 mm and a diameter of approximately 500 mm was fabricated using the proposed IHBF method. As a result, the measured shape error expressed as roundness to diameter ratio was 0.52%, and the calculated average plastic strain was 0.02, which was approximately 1/19 times of the forming limit strain of the material. The amount of springback after forming by calculation was approximately 0.7 mm, indicating that the amount of water required for IHBF was 5.90% of the volume of the spherical pressure vessel, while the required water pressure was no bigger than 2.3 MPa. The process directly utilizes triangular flat plate parts, eliminating the need for molds to process closed preform shells resulting in a low average plastic strain during forming, thereby improving the quality of the formed spherical pressure vessels.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Safety, Risk, Reliability and Quality

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3