Multiphysics-Based Statistical Model for Investigating the Mechanics of Carbon Nanotubes Membranes for Proton-Exchange Membrane Fuel Cell Applications

Author:

Vijayaraghavan V.1,Garg A.2,Gao Liang3

Affiliation:

1. School of Mechanical and Manufacturing Engineering, The University of New South Wales, Kensington, Sydney, NSW 2033, Australia

2. Intelligent Manufacturing Key Laboratory of Ministry of Education, Shantou University, Shantou, China e-mail:

3. State Key Laboratory for Digital Manufacturing Equipment and Technology, Huazhong University of Science and Technology, 1037 Luoyu Road, Wuhan 430074, China

Abstract

The filter membrane made up of carbon nanostructure is one of the important components in proton exchange membrane fuel cell (PEMFC). The membrane while under operating conditions of a PEMFC is subjected to various dynamical loads due to the imposition of several input operating factors of the PEMFC. Hence, it is important to estimate optimal process parameters, which can maximize the strength of the membrane. Current studies in PEMFC focus on adsorption and transport-related properties of PEMFC membrane, without adequately investigating the mechanical strength of the membrane. This study proposes a multiphysics model of the membrane, which is used to extract the mechanical properties of the membrane by systematically varying various input factors of PEMFC. The extracted data are then fed into a neural search machine learning cluster to obtain optimal design parameters for maximizing the strength of the membrane. It is expected that the findings from this study will provide critical design data for manufacturing PEMFC membranes with high strength and durability.

Funder

Huazhong University of Science and Technology

Shantou University

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electronic, Optical and Magnetic Materials

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3