Gains Selection for a Variable Gain Adaptive Control System for Turning

Author:

Lin Shield Bao-Hsin1,Masory Oren1

Affiliation:

1. Mechanical Engineering Department, Texas A&M University, College Station, TX 77843-3123

Abstract

The adaptive control constraint system described is a nonlinear, sampled data system designed to regulate the cutting force during turning operations. The controller keeps the system stable under wide variations in process parameters, limits the force overshoot, and provides fast transient response. The stability region of the nonlinear system was determined in order to define the boundaries of the gain space within which the optimal gains that minimize the ISE index of performance were selected. As a result, a data base for optimal gains as functions of process parameters was generated. Since in most cases the depth-of-cut changes in an unknown manner, the use of this data base is limited. To overcome this problem, an on-line adaption scheme of the gains was designed to achieve optimal response without the need for depth-of-cut measurements. With this control scheme, a series of simulations were performed that demonstrate excellent response under wide variations of process parameters.

Publisher

ASME International

Subject

General Medicine

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Preview Control of Cutting Force in CNC Turning Machines;IFAC Proceedings Volumes;2001-08

2. Intelligent Sliding Mode Control of Cutting Force During Single-Point Turning Operations;Journal of Manufacturing Science and Engineering;2000-07-01

3. Control of Machine Tools;Journal of Manufacturing Science and Engineering;1997-11-01

4. Force control in turning based on robust PI controller design;Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture;1997-02-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3