Synthesis and Heat Transfer Performance of Phase Change Microcapsule Enhanced Thermal Fluids

Author:

Cao Fangyu1,Kalinowski Paul2,Lawler John3,Seung Lee Hak1,Yang Bao4

Affiliation:

1. Department of Mechanical Engineering, University of Maryland, College Park, MD 20742

2. ATEC, Inc., College Park, MD 20742

3. ATEC, Inc., College Park, MD 20742 e-mail:

4. Department of Mechanical Engineering, University of Maryland, College Park, MD 20742 e-mail:

Abstract

Polyalphaolefins (PAOs) are widely implemented for electronics cooling, but suffer from a low thermal conductivity of about 0.14 W/mK. However, adding thermally conductive, phase-change-material (PCM) particles to a PAO can significantly improve the fluid thermal properties. In this paper, PCM microcapsules and silver-coated PCM microcapsules were synthesized using the emulsion polymerization method and the thermal performance of PCM fluids was studied in a microchannel heat sink and compared with that of the pure PAO. A test loop was designed and fabricated to evaluate the synthesized PCM fluids and it was found that fluid with uncoated PCM microcapsules has a 36% higher heat transfer coefficient than that of the pure PAO. Additionally, the heat transfer coefficient of PCM fluids with silver-coated PCM microcapsules was also 27% higher than that of pure PAO, but lower than that of fluids with uncoated PCM microcapsules. The thermal resistance of the uncoated PCM fluid was about 20% lower than that of the pure PAO fluid at the same pumping power, despite the PCM fluid's higher viscosity. Pumping tests were run for several hours and showed no evidence of particle accumulation or settling within the heat transfer loop.

Funder

U.S. Department of Energy

Directorate for Engineering

Small Business Innovative Research and Small Business Technology Transfer

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3