Wireless Point-of-Care Diagnosis for Sleep Disorder With Dry Nanowire Electrodes

Author:

Varadan Vijay K.1,Oh Sechang2,Kwon Hyeokjun2,Hankins Phillip2

Affiliation:

1. University of Arkansas, Fayetteville, AR 72701

2. Department of Electrical Engineering, University of Arkansas, Fayetteville, AR 72701

Abstract

Currently, available sleep monitoring systems use electrical recording where the electrodes make contact with the patient’s skin using a conducting gel. The electrode wires are connected to a processing recording system. The subject has to be in close proximity of these machines due to the direct electrical connections with the body and the machine. The conductive gel along with many wires connected to the biopotential electrodes makes them uncomfortable for the subject, with the result that recording and monitoring of the patient’s sleep patterns can become very difficult. The patient has to be in a sleep lab and/or a hospital at all times and at least one technician needs to watch the patient’s sleep behavior via video. The patient may not experience normal sleep patterns under such environments and as such, the diagnostic results are not really very conclusive. The commonly monitored biopotential electrodes are electrocardiogram, electroencephalogram, electromyogram, and electrooculogram. The electrodes used for monitoring these signals are Ag/AgCl and gold, which require skin preparation by means of scrubbing to remove the dead cells and application of electrolytic gel to reduce the skin contact resistance. The gel takes a role of reducing skin contact impedance in the conventional Ag/AgCl electrode and its usage is directly related to the sensitivity. However, the wet conventional Ag/AgCl electrode has some drawbacks such as difficulty in long time monitoring because the gel dries out after few hours and skin irritations. Usually, physiological parameters are monitored over an extended period of time during the patient’s normal daily life to diagnose a disease. In this case, the wet conventional Ag/AgCl cannot be used because of the dry-out of gel. The dry-out of gel increases the impedance between skin and electrode and it is reflected in the poor signal sensitivity. Also noises, such as motion artifact and baseline wander, are added to the biopotential signals as the electrode floats over the electrolytic gel during monitoring. To overcome these drawbacks, dry nanoelectrodes are proposed in this paper where the electrodes are held against the skin surface to establish contact with the skin without the need for electrolytic fluids or gels. The results are presented along with a wireless communication such that the proposed system is ideal for point-of-care diagnosis of the patient at home.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,General Materials Science,General Medicine

Reference11 articles.

1. Guidelines for Point-of-Care Testing: Improving Patient Outcomes;Kost;Am. J. Clin. Pathol.

2. Patient Monitoring Using Wireless Nwtworks: Reliability and Power Management;Varshney

3. Mobile Telemedicine System for Home Care and Patient Monitoring;Figueredo

4. Fundamentals of EEG Measurement;Teplan

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3