Aeroelastic Analysis of Membrane Microair Vehicles—Part II: Computational Study of a Plunging Membrane Airfoil

Author:

Attar Peter J.1,Gordnier Raymond E.2,Johnston Jordan W.1,Romberg William A.1,Parthasarathy Ramkumar N.1

Affiliation:

1. School of Aerospace and Mechanical Engineering, The University of Oklahoma, Norman, OK 73019

2. Air Force Research Laboratory, Wright-Patterson AFB, OH 45433-7913

Abstract

In the second paper of the two part study of membrane microair vehicles, computations are performed for a plunging membrane airfoil. The computational model uses a sixth-order finite difference solution of the Navier–Stokes equations coupled to a finite element solution of a set of nonlinear string equations. The effect, on the structural and fluid response, of plunging Strouhal number, reduced frequency, and static angle of attack is examined. Qualitatively, the flow field is found to be very complex with interactions of vortices shed from various locations along the chord of the airfoil. At a low angle of attack and a low Strouhal number, increasing reduced frequency results in a decrease and an increase in the mean sectional lift and drag coefficients, respectively. Also, at a low angle of attack, increasing the Strouhal number has minimal effect at high and low values of reduced frequencies, but a significant effect is found at an intermediate value of reduced frequency. When the effect of angle of attack is studied for fixed values of Strouhal number and reduced frequency, it is found that the act of plunging gives improved mean sectional lift when compared with the case of a fixed flexible airfoil. The improvement does not increase monotonically with the angle of attack but instead is maximum at an intermediate value. Finally, increasing the value of the membrane prestrain, which stiffens the airfoil, results in a reduced value of the sectional lift coefficient for a given Strouhal number, reduced frequency, and angle of attack.

Publisher

ASME International

Subject

General Engineering

Reference20 articles.

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3