An Assessment of the Wear Characteristics of Microcutting Arrays Produced From Polycrystalline Diamond and Cubic Boron Nitride Composites

Author:

Pacella M.1,Axinte D. A.2,Butler-Smith P. W.1,Shipway P.3,Daine M.1,Wort C.4

Affiliation:

1. Faculty of Engineering, Machining and Condition Monitoring Research Group, Manufacturing and Process Technologies Research Division, The University of Nottingham, University Park, Nottingham NG7 2RD, UK e-mail:

2. Professor Faculty of Engineering, Machining and Condition Monitoring Research Group, Manufacturing and Process Technologies Research Division, The University of Nottingham, University Park, Nottingham NG7 2RD, UK e-mail:

3. Professor Faculty of Engineering, Materials, Mechanics and Structures Research Division, The University of Nottingham, University Park, Nottingham NG7 2RD, UK e-mail:

4. Manager, New Technologies, Element Six Ltd., Berkshire SL5 8BP, UK e-mail:

Abstract

The current methods for manufacturing super-abrasive elements result in a stochastic geometry of abrasives with random three-dimensional abrasive locations. This paper focuses on the evaluation of wear progression/failure characteristics of micro-abrasive arrays made of ultrahard composites (polycrystalline diamond—PCD; polycrystalline cubic boron nitride—PCBN) in cutting/wear tests against silicon dioxide workpiece. Pulsed laser ablation (Nd:YAG laser) has been used to manufacture repeatable patterns of micro-abrasive edges onto microstructurally different PCD/PCBN composites. Opposing to these highly engineered micro-abrasive arrays, conventional electroplated abrasive pads containing diamond and CBN abrasives, respectively, have been chosen as benchmarks and tested under the same conditions. Contact profiling, optical microscopy, and environmental scanning electron microscopy have been employed for the characterization of the abrasive arrays and electroplated tools before/during/after the wear/cutting tests. For the PCD abrasive micro-arrays, the type of grain and binder percentage proved to affect the wear performances due to the different extents of compressive stresses occurring at the grain boundaries. In this respect, the micro-arrays made of PCD with mixed diamond grain sizes have shown slower wear progression when compared to the electroplated diamond pads confirming the combination of the high wear resistance typical of the fine grain and the good shock resistance typical of the coarse grain structures. The micro-arrays made of fine grained diamond abrasives have produced lower contact pressures with the workpiece shaft, confirming a possible application in polishing or grinding. As for the PCBN abrasive micro-arrays, the increase of metallic binder and the presence of metalloids in the medium content-CBN specimens have shown to produce higher contact pressure with the workpiece when compared to the electroplated specimen, causing fracturing as the main wear mechanism; while the PCBN micro-array with purely a metallic binder phase has shown slower wear and lower contact pressure in comparison to the electroplated CBN specimen. Among all of the tested arrays, the mixed grained PCD and the purely metallic binder phase PCBN micro-arrays have shown slower wear when benchmarked to the electroplated pads, giving a possible application of their use in the cutting tool industry.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3