Effects of Coolant Density, Specific Heat Capacity, and Biot Number on Turbine Vane Cooling Effectiveness

Author:

Luque S.1,Jones T. V.2,Povey T.2

Affiliation:

1. Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK e-mail:

2. Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK

Abstract

This paper describes the effects of coolant-to-mainstream density ratio and specific heat capacity flux ratio (the product of blowing ratio and specific heat capacity ratio) on the overall cooling effectiveness of high pressure (HP) turbine vanes. Experimental measurements have been conducted at correct engine-matched conditions of Mach number, Reynolds number, turbulence intensity, and coolant-to-mainstream momentum flux ratio. Vanes tested were fully cooled production parts from an engine currently in service. A foreign gas mixture of SF6 and Ar was selected for injection as coolant in the facility so that density and blowing ratios were also matched to the engine situation. The isentropic exponent of the foreign gas mixture coincides with that of air. Full-coverage surface maps of overall cooling effectiveness were acquired by an infrared (IR) thermography technique at a range of mainstream-to-coolant temperature ratios. Measurements were subsequently scaled to engine conditions by employing a new theory based on the principle of superposition and a recovery and redistribution temperature demonstrated in previous papers. It is shown that the two aerodynamically matched situations of air- and foreign-gas-cooled experiments give virtually the same effectiveness trends and patterns. Actual levels differ, however, on account of specific heat capacity flux ratio differences. The effect is described and quantified by a one-dimensional analytical model of the vane wall. Differences in Biot number with respect to engine conditions are discussed as they also influence the scaling of turbine metal temperatures.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3