Proper Orthogonal Decomposition–Radial Basis Function Surrogate Model-Based Inverse Analysis for Identifying Nonlinear Burgers Model Parameters From Nanoindentation Data

Author:

Hamim Salah U.1,Singh Raman P.2

Affiliation:

1. Advanced Development Engineering, Fiat Chrysler Automobiles, Auburn Hills, MI 48326

2. School of Mechanical and Aerospace Engineering, Oklahoma State University, Stillwater, OK 74078 e-mail:

Abstract

This study explores the application of a proper orthogonal decomposition (POD) and radial basis function (RBF)-based surrogate model to identify the parameters of a nonlinear viscoelastic material model using nanoindentation data. The inverse problem is solved by reducing the difference between finite element simulation-trained surrogate model approximation and experimental data through genetic algorithm (GA)-based optimization. The surrogate model, created using POD–RBF, is trained using finite element (FE) data obtained by varying model parameters within a parametric space. Sensitivity of the model parameters toward the load–displacement output is utilized to reduce the number of training points required for surrogate model training. The effect of friction on simulated load–displacement data is also analyzed. For the obtained model parameter set, the simulated output matches well with experimental data for various experimental conditions.

Funder

Office of Experimental Program to Stimulate Competitive Research

Oklahoma State University

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3