The Effect of Surface Geometry of Solid Wall On the Collapse of a Cavitation Bubble

Author:

Sun Yurong1,Du Yuxin2,Yao Zhifeng3,Zhong Qiang2,Geng Siyuan4,Wang Fujun2

Affiliation:

1. College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China

2. Beijing Ruicheng Times Information Technology Limited company, Beijing, 100015, China; College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China

3. College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China; Beijing Engineering Research Center of Safety and Energy Saving Technology for Water Supply Network System, Beijing 100083, China

4. PowerChina Beijing Engineering Corporation Limited, Beijing, 100022, China; College of Water Resources and Civil Engineering, China Agricultural University, Beijing, 100083, China

Abstract

Abstract The objective of this paper is to reveal the influence of different surface geometric conditions on the dynamic behavior characteristics of a laser-induced bubble collapse. A high-speed camera system was used to record the oscillation process of the laser-induced bubble on plane solid walls with different roughness and a wall containing reentrant cavities full of water or gas. The focus is on the quantitative analysis of the morphological characteristics of the cavitation bubble near the solid wall under different surface forms during the first two oscillation period. The results show that the dimensionless ratio γ, defined as the distance from the center of the bubble to the wall divided by the maximum radius of the bubble, has a great influence on the change of the cavitation shape in the direction of the vertical wall. Different surface geometries without gas in our cases have no significant effect on the collapse time of cavitation bubbles. While for the surface containing gas, the direction of movement of the bubble accompanying the micro-jet will greatly change during the collapse of the cavitation bubble, and the collapse time seems to be independent of the dimensionless ratio γ. These achievements shed the light for the engineering to avoid the damage of the micro-jet caused by design suitable surface geometry.

Publisher

ASME International

Subject

Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3