Investigation of the Plastic Properties of Certain Ferrous and Nonferrous Materials at High Temperature

Author:

Kaftanog˘lu B.1,Sivaci K.2

Affiliation:

1. Mechanical Engineering Department, Middle East Technical University, Ankara, Turkey

2. Turkish Petroleum Co., Batman, Turkey

Abstract

Plastic properties of certain carbon steels, brasses, copper, and aluminum are determined between room and recyrstallization temperatures. The investigations are carried out using the tension test conducted in a specially constructed furnace. Equivalent-stress, equivalent-strain curves and plastic anisotropy parameters are obtained. The equivalent-stress, equivalent-strain curves are then fitted to an empirical equation σ¯ = A(B + ε¯)n by a computer program employing a numerical gradient method. The results show that equivalent stress decreases as the temperature increases, and it increases as the strain-rate increases. Materials obtained as round bars show very little plastic anisotropy in their transverse planes whereas materials in the form of sheets have pronounced anisotropy. Plastic anisotropy decreases as temperature increases. The results obtained and techniques used may prove to be useful for designers of metal forming equipments, and researchers in the area of plasticity.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Computer-Aided Analysis and Modelling of Plastic Behaviour of Steels at Elevated Temperatures;Modelling Hot Deformation of Steels;1989

2. Flow curves and deformation of materials at different temperatures and strain rates;Journal of Mechanical Working Technology;1982-02

3. Plastic Analysis of Flange Wrinkling in Axisymmetrical Deep-Drawing;Proceedings of the Twenty-First International Machine Tool Design and Research Conference;1981

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3