Nonlinear Finite Element Formulation for the Large Displacement Analysis of Plates

Author:

Chang Bilin1,Shabana A. A.1

Affiliation:

1. Department of Mechanical Engineering, University of Illinois at Chicago, Chicago, IL 60680

Abstract

In this investigation a nonlinear total Lagrangian finite element formulation is developed for the dynamic analysis of plates that undergo large rigid body displacements. In this formulation shape functions are required to include rigid body modes that describe only large translational displacements. This does not represent any limitation on the technique presented in this study, since most of commonly used shape functions satisfy this requirement. For each finite plate element an intermediate element coordinate system, whose axes are initially parallel to the axes of the element coordinate system, is introduced. This intermediate element coordinate system, which has an origin which is rigidly attached to the origin of the deformable body, is used for the convenience of describing the configuration of the element with respect to the deformable body coordinate system in the undeformed state. The nonlinear dynamic equations developed in this investigation for the large rigid body displacement and small elastic deformation analysis of the rectangular plates are expressed in terms of a unique set of time invariant element matrices that depend on the assumed displacement field. The invariants of motion of the deformable body discretized using the plate elements are obtained by assembling the invariants of its elements using a standard finite element procedure.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 27 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Optimal Design of Electrode Topology of Dielectric Elastomer Actuators Based on the Parameterized Level Set Method;Soft Robotics;2023-02-01

2. Introduction;Intelligent Systems, Control and Automation: Science and Engineering;2021-11-29

3. Nonlinear Dynamic of a Rotating Truncated Conical Shell;Nonlinear Approaches in Engineering Applications;2011-12-01

4. A Flexible Multibody Pantograph Model for the Analysis of the Catenary–Pantograph Contact;Computational Methods in Applied Sciences;2010-10-21

5. Analysis of multibody systems with flexible plates using variational graph-theoretic methods;Multibody System Dynamics;2010-10-19

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3