Affiliation:
1. Associate Professor Department of Physical Therapy, Department of Orthopaedic Surgery, University of Missouri, 801 Clark Hall, Columbia, MO 65211-4250 e-mail:
2. Research Associate Department of Civil & Mechanical Engineering, University of Missouri–Kansas City, 318 Robert H. Flarsheim Hall, 5110 Rockhill Road, Kansas City, MO 64110 e-mail:
3. Post-Doctoral Research Fellow Department of Biomechanics, Hospital for Special Surgery, 535 East 70th Street, New York, NY 10021 e-mail:
Abstract
Detailed knowledge of knee kinematics and dynamic loading is essential for improving the design and outcomes of surgical procedures, tissue engineering applications, prosthetics design, and rehabilitation. This study used publicly available data provided by the “Grand Challenge Competition to Predict in-vivo Knee Loads” for the 2013 American Society of Mechanical Engineers Summer Bioengineering Conference (Fregly et al., 2012, “Grand Challenge Competition to Predict in vivo Knee Loads,” J. Orthop. Res., 30, pp. 503–513) to develop a full body, musculoskeletal model with subject specific right leg geometries that can concurrently predict muscle forces, ligament forces, and knee and ground contact forces. The model includes representation of foot/floor interactions and predicted tibiofemoral joint loads were compared to measured tibial loads for two different cycles of treadmill gait. The model used anthropometric data (height and weight) to scale the joint center locations and mass properties of a generic model and then used subject bone geometries to more accurately position the hip and ankle. The musculoskeletal model included 44 muscles on the right leg, and subject specific geometries were used to create a 12 degrees-of-freedom anatomical right knee that included both patellofemoral and tibiofemoral articulations. Tibiofemoral motion was constrained by deformable contacts defined between the tibial insert and femoral component geometries and by ligaments. Patellofemoral motion was constrained by contact between the patellar button and femoral component geometries and the patellar tendon. Shoe geometries were added to the feet, and shoe motion was constrained by contact between three shoe segments per foot and the treadmill surface. Six-axis springs constrained motion between the feet and shoe segments. Experimental motion capture data provided input to an inverse kinematics stage, and the final forward dynamics simulations tracked joint angle errors for the left leg and upper body and tracked muscle length errors for the right leg. The one cycle RMS errors between the predicted and measured tibia contact were 178 N and 168 N for the medial and lateral sides for the first gait cycle and 209 N and 228 N for the medial and lateral sides for the faster second gait cycle. One cycle RMS errors between predicted and measured ground reaction forces were 12 N, 13 N, and 65 N in the anterior-posterior, medial-lateral, and vertical directions for the first gait cycle and 43 N, 15 N, and 96 N in the anterior-posterior, medial-lateral, and vertical directions for the second gait cycle.
Subject
Physiology (medical),Biomedical Engineering
Cited by
51 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献