Effect of Meniscus Recession on the Effective Pore Radius and Capillary Pumping of Copper Metal Foams

Author:

Shirazy Mahmood R. S.1,Fréchette Luc G.1

Affiliation:

1. Department of Mechanical Engineering, Institut Interdisciplinaire d'Innovation Technologique—3IT, Université de Sherbrooke, Sherbrooke, PQ J1K2R1, Canada

Abstract

An experimental study is performed to characterize the effect of meniscus recession on the effective pore radius and capillary pumping of copper metal foams which are to be used as wicks in heat pipes for electronic cooling. Knowledge of the effective pore radius is critical in defining the capillary pumping of a wicking material but is rarely measured under operating conditions. It is known that the meniscus of a liquid recedes when evaporating from a porous media, which could impact the effective pore radius and therefore the capillary pumping capabilities of the foam. To elucidate this impact, the evaporation rate is measured from foam strips wicking ethanol from a reservoir while applying heat fluxes to the foam. Using thermocouple and IR camera measurements, the measured evaporation rates are corrected to account for different thermal losses, including natural convection, direct thermal conduction to the liquid, and evaporation from the container. An analytical model is then developed to relate the evaporated mass to the maximum capillary pressure (minimum effective pore radius) provided by the foam. It is shown for the first time, that just before the onset of dryout, the recessed meniscus will lead to 15%, 28%, and 52% decrease in effective pore radius for samples with 68%, 75%, and 82% porosities, respectively. The capillary pumping therefore increases during evaporation. This can have significant impact on the prediction of the capillary limits in two phase capillary driven devices.

Publisher

ASME International

Subject

Electrical and Electronic Engineering,Computer Science Applications,Mechanics of Materials,Electronic, Optical and Magnetic Materials

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3