Affiliation:
1. Plymouth University, Devon, UK
Abstract
The objective of this work is an experimental and numerical investigation for a bol Richard Cullen ted composite flange connection for composite pipes, which are used in the oil and gas applications, and obtain a joint with high strength and high corrosion resistance. For the experimental part, we have designed and manufactured the required mould, which ensures the quality of the composite materials and controls its surface grade. Based on the ASME Boiler and Pressure Vessel Code, Section X, this GFRP flange has been fabricated using biaxial glass fibre braid and polyester resin in a vacuum infusion process. Numerically, an investigation is carried out using 3D finite element analysis (FEA) of a bolted GFRP flange joint including flange, pipe, gasket and bolts. This model has taken into account the orthotropy of the GFRP material and the non-linear behaviour of the rubber gasket material for both the loading and non-loading conditions. Furthermore, the leakage propagation between the flange and the gasket has also been simulated in this investigation by using the pressure-penetration criteria PPNC in ANSYS. Finally, the flange has been tested under the internal pressure and the agreement between the experimental and numerical results is excellent.
Publisher
American Society of Mechanical Engineers
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献