Modeling Tumor Microenvironments In Vitro

Author:

Wu Mingming1,Swartz Melody A.2

Affiliation:

1. Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY 14853

2. Institute of Bioengineering and Institute for Experimental Cancer Research (ISREC), School of Life Sciences, École Polytechnique Fédérale de Lausanne (EPFL), Lausanne 1015, Switzerland

Abstract

Tumor progression depends critically upon the interactions between the tumor cells and their microenvironment. The tumor microenvironment is heterogeneous and dynamic; it consists of extracellular matrix, stromal cells, immune cells, progenitor cells, and blood and lymphatic vessels. The emerging fields of tissue engineering and microtechnologies have opened up new possibilities for engineering physiologically relevant and spatially well-defined microenvironments. These in vitro models allow specific manipulation of biophysical and biochemical parameters, such as chemical gradients, biomatrix stiffness, metabolic stress, and fluid flows; thus providing a means to study their roles in certain aspects of tumor progression such as cell proliferation, invasion, and crosstalk with other cell types. Challenges and perspectives for deconvolving the complexity of tumor microenvironments will be discussed. Emphasis will be given to in vitro models of tumor cell migration and invasion.

Publisher

ASME International

Subject

Physiology (medical),Biomedical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3