Convective Performance of Nanofluids in a Laminar Thermally Developing Tube Flow

Author:

Kolade Babajide1,Goodson Kenneth E.1,Eaton John K.1

Affiliation:

1. Department of Mechanical Engineering, Stanford University, Stanford, CA 94305-3030

Abstract

While many of the published papers on nanofluids focus on measuring the increased thermal conductivity of the suspension under static conditions, the convective performance of these fluids has received relatively little attention. The present work measures the effective thermal conductivity of nanofluids under developing convective boundary layer conditions in tubes of diameter 5 mm. The experiments use a hydrodynamically fully developed laminar tube flow in the range 500≤Re≤1600 with constant wall heat flux. The experiments were validated through measurements on pure de-ionized (DI) water, which results in a thermal conductivity value that agrees within 0.4% of handbook value. The increase in effective thermal conductivity for DI-water/Al2O3 nanofluids is 6% for 2% volume concentration of Al2O3, which is consistent with the previously reported conductivity values for this sample. For a suspension of multiwall carbon nanotubes in silicone oil, the thermal conductivity is increased by 10% over that of the base fluid for a concentration of 0.2% by volume. Scanning electron microscopy was utilized to examine the structure of the dry state of the nanotubes and elucidate the performance differences of carbon nanomaterials.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science

Cited by 47 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Measurement of the thermal conductivity of nanofluids using a comparative interferometric method;International Journal of Thermal Sciences;2024-05

2. Electrophysical Properties and Thermal Conductivity of Reduced Graphene Oxide–ZnO Composite;Nanosistemi, Nanomateriali, Nanotehnologii;2023-09

3. Analysis of parallel flow heat exchanger using Cu nanofluids in the developing region;PROCEEDINGS OF THE 1ST INTERNATIONAL CONFERENCE ON FRONTIER OF DIGITAL TECHNOLOGY TOWARDS A SUSTAINABLE SOCIETY;2023

4. Heat transfer and cost analysis of circular heating source based tubular rods loaded with thermal oil-MWCNT nanofluid;Materials Today: Proceedings;2021-12

5. Experimental and CFD Analysis of GW70 based Cu Nanofluids in a Parallel Flow Heat Exchanger;International Journal of Recent Technology and Engineering (IJRTE);2021-11-30

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3