Affiliation:
1. e-mail:
2. e-mail: Institute of Fluid Dynamics, Department of Mechanical and Process Engineering, ETH Zurich, Sonneggstrasse 3, Zurich 8092, Switzerland
Abstract
A film-cooling configuration generating an antikidney vortex pair is studied. The configuration features cylindrical cooling holes inclined at an angle of α=35 deg and arranged in two spanwise rows with row-wise alternating yaw angles ±β. Results of several large-eddy simulations are presented with varying blowing conditions and yaw angles. The effects on the achieved cooling and the generated losses are studied. The film-cooling Reynolds number (based on the fully turbulent hot boundary layer along a flat plate and the cooling hole diameter) is 6570 and the Mach number is 0.2. The density as well as mass-flux ratios (DR and M) range from 1 to 2 and the yaw angles from β=±30 deg to ±60 deg. We identify scaling parameters and explain relevant mechanisms. Moreover, the flow field is subdivided into three regions featuring different physical mechanisms: the single-jet, the jet-interaction, and the diffusion region. A strong antikidney vortex pair occurs for high momentum ratios I. For the highest ratio, I = 2.3, our configuration may provide even better effectiveness than cooling with particular fan-shaped holes.
Cited by
25 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献