Nanomechanical and Wear Behavior of Microtextured Carbide-Coated CoCrMo Alloy Surfaces

Author:

Ettienne-Modeste Geriel A.1,Topoleski L. D. Timmie2

Affiliation:

1. e-mail:

2. e-mail:  Department of Mechanical Engineering, University of Maryland Baltimore County, Baltimore, MD 21250

Abstract

The nanomechanical properties of a CoCrMo medical implant alloy and a novel microtextured carbide-coated CoCrMo alloy (MTCC) surface—hardness and elastic modulus—were examined using nanoindentation. The MTCC surfaces may be a successful alternative bearing material for artificial joints. Understanding the nanomechanical, material properties, and surface morphology of the MTCC–CoCrMo surface are important for designing wear resistant artificial joints. The microtextured carbide surfaces were created using a microwave plasma-assisted chemical vapor deposition reaction (MPCVD). Nanomechanical properties, volumetric wear properties, and surface morphology were measured and used to determine the performance of the conventional CoCrMo alloy and MTCC surfaces (processed for either 2 or 4 h) in static environments and under severe wear conditions. The hardness, elastic modulus, and surface parameters of the 4-h MTCC surfaces were always greater than the 2-h MTCC and CoCrMo alloy surfaces. The nanomechanical properties changed for the CoCrMo alloy and 2-h and 4-h MTCC surfaces after, in contrast to before, wear testing. This indicates that the wear mechanisms affect the nanomechanical results. Overall, the 4-h MTCC surfaces had greater wear resistance than the 2-h MTCC or CoCrMo alloy surfaces.

Publisher

ASME International

Subject

Surfaces, Coatings and Films,Surfaces and Interfaces,Mechanical Engineering,Mechanics of Materials

Reference33 articles.

1. Engineering Issues and Wear Performance of Metal on Metal Hip Implants;Clin. Orthop. Relat. Res.,1996

2. Quantitative Analysis of the Wear and Wear Debris From Low to High Carbon Content Cobalt Alloys Used in Metal on Metal Total Hip Replacements;J. Mater. Sci.: Mater. Med.,1999

3. A Comparative Joint Simulator Study of the Wear of Metal-on-Metal and Alternative Material Combinations in Hip Replacements;Proc. Inst. Mech. Eng. H,2000

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3