Modeling of Thermoelastic Stress Wave in Laser-Assisted Cell Direct Writing

Author:

Wang Wei1,Lin Yafu1,Huang Yong1

Affiliation:

1. Department of Mechanical Engineering, Clemson University, Clemson, SC 29634

Abstract

Laser-assisted cell direct-write technique has been a promising biomaterial direct-write method. For safe and reproducible cell direct writing, cell injury due to process-induced external stress must be understood in addition to biological property research. The objective of this study is to model the thermoelastic stress wave propagation inside the coating in laser-assisted cell direct writing when vaporization and/or optical breakdown of coating materials is/are not available. It is found that a bipolar pressure pair, with peak magnitudes on the order of 1 MPa or higher, has been developed within a finite thin coating medium. Shorter duration laser pulses lead to higher thermoelastic stresses. This study will help to understand the photomechanical stress and its relevance with biomaterial damage in laser-assisted cell direct writing.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Laser-Induced Forward Transfer of Biomaterials;Additive Manufacturing in Biomedical Applications;2022-09-12

2. The Power of CAD/CAM Laser Bioprinting at the Single-Cell Level: Evolution of Printing;3D Bioprinting and Nanotechnology in Tissue Engineering and Regenerative Medicine;2022

3. A State‐of‐the‐Art Review of Laser‐Assisted Bioprinting and its Future Research Trends;ChemBioEng Reviews;2021-06-26

4. Laser‐Induced Forward Transfer: Fundamentals and Applications;Advanced Materials Technologies;2018-08-08

5. Laser-Induced Forward Transfer of Soft Materials;Laser Printing of Functional Materials;2018-01-05

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3