Affiliation:
1. George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA 30332
2. Fellow ASME
Abstract
Enhancement of thermal emission and control of its direction are important for applications in optoelectronics and energy conversion. A number of structures have been proposed as coherent emission sources, which exhibit a large emissivity peak within a narrow wavelength band and at a well-defined direction. A commonly used structure is the grating, in which the excited surface polaritons or surface waves are coupled with propagating waves in air, resulting in coherent emission for p polarization only. One-dimensional photonic crystals can also support surface waves and may be modified to construct coherent emission sources. The present study investigates coherent emission from a multilayer structure consisting of a SiC film coated atop a dielectric photonic crystal (PC). By exciting surface waves at the interface between SiC and the PC, coherent emission is predicted for both p and s polarizations. In addition to the excitation of surface waves, the emission from the proposed multilayer structure can be greatly enhanced by the cavity resonance mode and the Brewster mode.
Subject
Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics,General Materials Science
Cited by
53 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献