Simulations of Plastic Instabilities in Solid Mechanics

Author:

Tomita Yoshihiro1

Affiliation:

1. Faculty of Engineering, Kobe University, Nada, Kobe 657, Japan

Abstract

The purpose of the present article is provide a perspective for computational predictions related to such plastic instabilities as buckling, necking and flow localization including shear–banding under a wide range of deformation rates for a variety of materials, including single– and polycrystals. Computational bifurcation analyses for general cases, axisymmetric to nonaxisymmetric deformation, very thin–walled bodies, and specific materials with nonstandard constitutive equations are given. The postbifurcation analyses and regularization schemes to remedy the problems associated with spurious mesh sensitivity and incorrect convergence in finite element prediction of flow localization behavior are discussed. The instability behavior of thick circular tubes deformed under pressure and combined loading of internal/external pressure and axial force, neck and bulge propagations in polymeric materials, wrinkling of thin plates and shells under sheet metal forming processes, flow localization of thermo–elasto–viscoplastic materials under a wide range of deformation rates including adiabatic shear banding, and flow localization behavior of mono– and polycrystalline solids are reviewed with illustrative examples.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 77 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gradient nanomechanics in civil engineering;Nanomechanics of Structures and Materials;2024

2. Ionic conductivity of solid polymer electrolytes depending on elongation;Electrochimica Acta;2023-11

3. Flange Wrinkling in Deep-Drawing: Experiments, Simulations and a Reduced-Order Model;Journal of Manufacturing and Materials Processing;2022-07-10

4. An analytical model integrated with toolpath design for wrinkling prediction in conventional spinning;Journal of Materials Processing Technology;2022-02

5. Material Mechanics and Hussein Zbib: A Tribute to His Memory;Journal of Engineering Materials and Technology;2021-10-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3