Optimal Design and Sensitivity Analysis of the Dynamic Vibration Absorber With Amplifying Mechanism

Author:

Liu Yifan1,Cai Jiazhi1,Li Haiyuan2,Gao Qingbin1

Affiliation:

1. Harbin Institute of Technology (Shenzhen) School of Mechanical Engineering and Automation, , Shenzhen 518000 , China

2. Beijing University of Posts and Telecommunications School of Automation, , Beijing 100876 , China

Abstract

Abstract This work optimizes a dynamic vibration absorber (DVA) model equipped with an additional amplifying mechanism using the H∞ optimization criterion, which aims to minimize the maximum frequency response amplitude of the primary structure. This optimization problem is widely investigated using the fixed-point method, which, however, works only when the primary structure is undamped and gives approximate solutions at best. Instead, we seek the exact solutions, and a resultant-based optimization scheme is accordingly proposed, which allows handling purely univariate polynomial equations in the solving procedure to guarantee the convergence and global optimum conditions. Consequently, exactly numerical and closed-form optimal DVA parameters are obtained when the primary structure is damped and undamped, respectively. Furthermore, we are also interested in the effect of the amplifying mechanism on vibration suppression, showing that it functions as a convenient equivalent mass ratio regulator to benefit the DVA performance. Finally, the presented sensitivity analysis reveals the effect of the small variations of the DVA stiffness and damping on the vibration suppression performance and the role of the amplifying mechanism in balancing such two components’ uncertainties. This work generalizes the existing exact H∞ optimization methods and provides a guideline for the enhanced DVA design using the amplifying mechanism.

Funder

National Natural Science Foundation of China

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Graphics and Computer-Aided Design,Computer Science Applications,Software

Reference38 articles.

1. Device for Damping Vibrations of Bodies;Frahm,1911

2. Spectrum-Based Stability Analysis for Fractional-Order Delayed Resonator With Order Scheduling;Cai;J. Sound Vib.,2023

3. Theory of the Dynamic Vibration Absorber;Den Hartog;ASME J. Appl. Mech,1928

4. A Variant Design of the Dynamic Vibration Absorber;Ren;J. Sound Vib.,2001

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3