Individual Effect of Spatially Periodic Vertical Surface Temperatures and Nanoparticles on Natural Convection in Water

Author:

Narayana Mahesha1,Saha Richa2,Siddheshwar P. G.2,Nagouda Smita S.2

Affiliation:

1. Department of Mathematics, The University of the West Indies , Kingston 7, Jamaica

2. Center for Mathematical Needs, Department of Mathematics, CHRIST (Deemed to be University) , Bangalore 560029, India

Abstract

Abstract This paper considers the thermo-convective boundary-layer flow (BLF) of a water–copper mono-nanofluid over a flat vertical surface which is subjected to three types of periodic temperature variations described by the sinusoidal, sawtooth, and triangular waveforms. The temperature of the fluid at the flat surface is greater than the surrounding ambient temperature. The governing equations describing the BLF have been reduced to a non-similar form using an appropriate stream function formulation. The Keller-Box method is used to obtain numerical solution of the boundary-value problem. The effect of the pertinent parameters on the nature of the flow and the heat transfer has been discussed using actual thermophysical data. The results about the shear–stress and heat transfer rate at the surface are presented as well. To study the nature of BLF, the velocity and thermal boundary-layers, the streamline and isotherm plots have been considered, which reveal that the nanoparticle volume-fraction, amplitude of surface temperature variations, and the Grashof number play a pivotal role in enhancing/diminishing heat transfer. The final outcome reveals that the heat transfer is highest for the sinusoidal waveform, followed by that of the triangular and then, the sawtooth. An important inference is that a symmetric periodic temperature distribution at the surface enhances heat transfer more than that of a constant surface-temperature.

Publisher

ASME International

Reference31 articles.

1. Enhancing Thermal Conductivity of Fluids With Nanoparticles,1995

2. Enhanced Thermal Conductivity Through the Development of Nanofluids;MRS Online Proc. Libr.,1996

3. Thermal Conductivity of Nanoparticle-Fluid Mixture;J. Thermophys. Heat Transfer,1999

4. Anomalous Thermal Conductivity Enhancement in Nanotube Suspensions;Appl. Phys. Lett.,2001

5. Mechanisms of Heat Flow in Suspensions of Nano-Sized Particles (Nanofluids);Int. J. Heat Mass Transfer,2002

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3