Socio-Inspired Multi-Cohort Intelligence and Teaching-Learning-Based Optimization for Hydraulic Fracturing Parameters Design in Tight Formations

Author:

Muther Temoor1,Syed Fahad Iqbal1,Dahaghi Amirmasoud Kalantari1,Negahban Shahin1

Affiliation:

1. Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence, KS 66045

Abstract

Abstract Hydraulic fracturing is one of the revolutionary technologies widely applied to develop tight hydrocarbon reservoirs. Moreover, hydraulic fracture design optimization is an essential step to optimize production from tight reservoirs. This study presents the implementation of three new socio-inspired algorithms on hydraulic fracturing optimization. The work integrates reservoir simulation, artificial neural networks, and preceding optimization algorithms to attain the optimized fractures. For this study, a tight gas production dataset is initially generated numerically for a defined set of the fracture half-length, fracture height, fracture width, fracture conductivity, and the number of fractures’ values. Secondly, the generated dataset is trained through a neural network to predict the effects of preceding parameters on gas production. Lastly, three new socio-inspired algorithms including cohort intelligence (CI), multi-cohort intelligence (multi-CI), and teaching learning-based optimization (TLBO) are applied to the regressor output to obtain optimized gas production performance with the combination of optimum fracture design parameters. The results are then compared with the traditionally used optimizers including particle swarm optimization (PSO) and genetic algorithm (GA). The results demonstrated that the multi-CI and TLBO converge at the global best position more often with a success rate of at least 95% as compared to CI, PSO, and GA. Moreover, the CI, PSO, and GA are found to stuck many times at the local maximum. This concludes that the multi-CI and TLBO are good alternatives to PSO and GA considering their high performance in determining the optimum fracture design parameters in comparison.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3