Applying Different Artificial Intelligence Techniques in Dynamic Poisson’s Ratio Prediction Using Drilling Parameters

Author:

Siddig Osama1,Gamal Hany1,Elkatatny Salaheldin1,Abdulraheem Abdulazeez1

Affiliation:

1. Department of Petroleum Engineering, King Fahd University of Petroleum & Minerals, Box 5049, Dhahran 31261, Saudi Arabia

Abstract

Abstract Rock geomechanical properties impact wellbore stability, drilling performance, estimation of in situ stresses, and design of hydraulic fracturing. One of these properties is Poisson’s ratio which is measured from lab testing or derived from well logs, the former is costly, time-consuming, and does not provide continuous information, and the latter may not be always available. An alternative prediction technique from drilling parameters in real time is proposed in this paper. The novel contribution of this approach is that the drilling data is always available and obtained from the first encounter with the well. These parameters are easily obtainable from drilling rig sensors such as rate of penetration (ROP), weight on bit (WOB), and torque. Three machine-learning methods were utilized: support vector machine (SVM), functional network (FN), and random forest (RF). Dataset (2905 data points) from one well were used to build the models, while a dataset from another well with 2912 data points was used to validate the constructed models. Both wells have diverse lithology consists of carbonate, shale, and sandstone. To ensure optimal accuracy, sensitivity and optimization tests on various parameters in each algorithm were performed. The three machine-learning tools provided good estimations; however, SVM and RF yielded close results, with correlation coefficients of 0.99 and the average absolute percentage error (AAPE) values were mostly less than 1%. While in FN the outcomes were less efficient with correlation coefficients of 0.92 and AAPE around 3.8%. Accordingly, the presented approach provides an effective tool for Poisson's ratio prediction on a real-time basis at no additional expense. In addition, the same approach could be used in other rock mechanical properties.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

Reference82 articles.

1. The Influence of Young's Modulus on Stress Modelling Results;Hammah,2006

2. The Effect of Poisson’s Ratio on Rock Properties;Kumar,1976

3. The Effect of Poisson’s Ratio on Fracture Height;Labudovic;J. Pet. Technol.,1984

4. Drilling Time Reduction Through an Integrated Rock Mechanics Analysis;Nes,2005

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3