Real-Time Estimation of Mean Remaining Life Using Sensor-Based Degradation Models

Author:

Elwany Alaa1,Gebraeel Nagi1

Affiliation:

1. Georgia Institute of Technology, 765 Ferst Drive, NW, Atlanta, GA 30313

Abstract

Advances in sensor technology have led to an increased interest in using degradation-based sensory information to predict the remaining lives of partially degraded components and systems. This paper presents a stochastic degradation modeling framework for computing and continuously updating remaining life distributions (RLDs) using in situ degradation signals acquired from individual components during their operational lives. Unfortunately, these sensory-updated RLDs cannot be characterized using parametric distributions and their moments do not exist. Such difficulties hinder the implementation of this sensor-based framework, especially from the standpoint of computational efficiency of embedded algorithms. In this paper, we identify an approximate procedure by which we can compute a conservative mean of the sensory-updated RLDs and express the mean and variance using closed-form expressions that are easy to evaluate. To accomplish this, we use the first passage time of Brownian motion with positive drift, which follows an inverse Gaussian distribution, as an approximation of the remaining life. We then show that the mean of the inverse Gaussian is a conservative lower bound of the mean remaining life using Jensen’s inequality. The results are validated using real-world vibration-based degradation information.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference35 articles.

1. General Trends in Condition Monitoring of Electrical Insulation of Power Transformers;Feser

2. Review by Discussion of Condition Monitoring and Fault Diagnosis in Machine Tools;Martin;Int. J. Mach. Tools Manuf.

3. Failure Identification and Analysis for High-Voltage Induction Motors in the Petrochemical Industry;Thorsen;IEEE Trans. Ind. Appl.

4. Using Degradation Measures to Estimate a Time-to-Failure Distribution;Lu;Technometrics

Cited by 49 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3