Affiliation:
1. Manufacturing Automation Laboratory, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada
2. Fellow ASME
Abstract
The accurate prediction of chatter stability in general turning operations requires the inclusion of tool geometry and cutting conditions. This paper presents regenerative chip and regenerative chip area/cutting edge contact length based dynamic cutting force models, which consider cutting conditions and turning tool geometry. The cutting process is modeled as it takes place along the equivalent chord length between the two end points of the cutting edge. The regenerative chip model is simple, and the stability can be solved directly. However, the three-dimensional model considers the effect of tool vibrations at the present and previous spindle revolutions on the chip area, chord length, and force directions and is solved using Nyquist stability criterion. The penetration of worn tool flank into the finish surface is considered as a source of process damping. The effects of the nose radius, approach angle of the tool, and feedrate are investigated. The proposed stability model is compared favorably against the experimental results.
Subject
Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering
Cited by
91 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献