Chatter Stability of General Turning Operations With Process Damping

Author:

Eynian M.1,Altintas Y.21

Affiliation:

1. Manufacturing Automation Laboratory, University of British Columbia, 2054-6250 Applied Science Lane, Vancouver, BC, V6T 1Z4, Canada

2. Fellow ASME

Abstract

The accurate prediction of chatter stability in general turning operations requires the inclusion of tool geometry and cutting conditions. This paper presents regenerative chip and regenerative chip area/cutting edge contact length based dynamic cutting force models, which consider cutting conditions and turning tool geometry. The cutting process is modeled as it takes place along the equivalent chord length between the two end points of the cutting edge. The regenerative chip model is simple, and the stability can be solved directly. However, the three-dimensional model considers the effect of tool vibrations at the present and previous spindle revolutions on the chip area, chord length, and force directions and is solved using Nyquist stability criterion. The penetration of worn tool flank into the finish surface is considered as a source of process damping. The effects of the nose radius, approach angle of the tool, and feedrate are investigated. The proposed stability model is compared favorably against the experimental results.

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Reference20 articles.

Cited by 91 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3