Laminar Swirling Pipe Flow

Author:

Talbot L.1

Affiliation:

1. University of California, Berkeley, Calif.

Abstract

Abstract The problem of the decay of a rotationally symmetric steady swirl superimposed on Poiseuille flow in a round pipe was investigated theoretically and experimentally. The object was to determine the degree to which the rate of decay of the swirl as predicted by a linearized theory agreed with measured rates of decay at flow conditions near the critical conditions for swirl instability. The solution to the linearized equation of motion for the swirl was obtained. Swirling flow was produced experimentally by rotating a section of the test pipe. Swirl velocities were determined from motion-picture studies of colored oil droplets introduced in the flow. The stability of the swirl was investigated through visualization of a dye filament, and a critical curve for swirl instability was determined experimentally relating the angular velocity of the rotating section to the Reynolds number. The theoretical and experimental values for the decay parameter were found to agree closely, even at conditions of flow near the critical conditions for instability. It was concluded that in the problem under consideration the nonlinear effects are not appreciable for stable decay of the swirl.

Publisher

ASME International

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Cited by 40 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Influence of Axial Wall Slip on Swirl Velocity in a Laminar Microtube Flow;Lecture Notes in Mechanical Engineering;2024

2. Numerical Studies of Bubbles in Swirling Channel Flows;Journal of Fluids Engineering;2023-01-25

3. Analytical solutions of laminar swirl decay in a straight pipe;Communications in Nonlinear Science and Numerical Simulation;2012-08

4. Swirling Flow in Tubes with Sudden Expansion by Using 3D Particle Image Velocimetry Technique;Communications in Computer and Information Science;2012

5. Numerical investigations on swirl intensity decay rate for turbulent swirling flow in a fixed pipe;International Journal of Mechanical Sciences;2011-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3