Numerical Investigation on Mixture Formation in a Turbocharged Port-Injection Natural Gas Engine Using Multiple Cycle Simulation

Author:

Wu Zhenkuo1,Han Zhiyu1

Affiliation:

1. State Key Laboratory of Advanced Design and Manufacturing for Vehicle Body, College of Mechanical and Vehicle Engineering, Hunan University, Changsha 410082, Hunan, China e-mail:

Abstract

In the present study, multidimensional computational fluid dynamics (CFD) simulations were carried out to study mixture formation in a turbocharged port-injection natural gas engine. In order to achieve robust simulation results, multiple cycle simulation was employed to remove the inaccuracies of initial conditions setting. First, the minimal number of simulation cycles required to obtain convergent cycle-to-cycle results was determined. Based on this, the in-cylinder mixture preparation for three typical operating conditions was studied. The effects of fuel injection timing and intake valve open scheme on the mixture formation were evaluated. The results demonstrated that three simulation cycles are needed to achieve convergence of the results for the present study. The analysis of the mixture preparation revealed that only in the initial phase of the intake stroke, there is an obvious difference between the three operating conditions. At the spark timing, for 5500 rpm, full load condition mixture composition throughout the cylinder is flammable, and for 2000 rpm, 2 bar operating condition part of the mixture is lean and nonflammable. The fuel injection timing has an insignificant impact on the mixture flammability at the spark timing. It was observed that the designed nonsynchronous intake valve open scheme has stronger swirl and x-direction tumble motion than the baseline case, leading to better mixture homogeneity and spatial distribution. With an increase in volumetric efficiency, particularly at 2000 rpm, full load condition, by 4.85% compared to the baseline, which is in line with experimental observation.

Funder

China Scholarship Council

Publisher

ASME International

Subject

Mechanical Engineering,Energy Engineering and Power Technology,Aerospace Engineering,Fuel Technology,Nuclear Energy and Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3