Finite Strip Modeling of the Varying Dynamics of Shell-Like Structures During Machining Processes

Author:

Stefani J.1,Ahmadi K.1,Tuysuz O.2

Affiliation:

1. Department of Mechanical Engineering, University of Victoria, Victoria, BC V8P 5C2, Canada e-mail:

2. Manufacturing Automation Laboratory, Department of Mechanical Engineering, University of British Columbia, 6250 Applied Science Lane, Vancouver, BC V6T 1Z4, Canada e-mail:

Abstract

The efficiency of the finite strip method (FSM) in modeling the varying dynamics of shell-like structures during machining operations is investigated. The workpiece is modeled as a shallow, helicoidal, cantilevered shell, and the natural modes are computed using FSM. In the FSM solution, the workpiece is discretized only in the chordwise direction, and the membrane and bending displacement fields of the shell in the spanwise direction are approximated by a set of basis functions that satisfy clamped-free boundary conditions. The displacement fields in the chordwise direction are approximated using polynomial functions. The efficiency of the presented FSM is investigated by comparing the computed natural vibration modes against the ones obtained using the finite element method (FEM). The FSM model was found to yield results of greater or comparable accuracy, even with up to 40% fewer degrees-of-freedom (DOFs). Also, the accuracy of the presented model is verified by comparing the predicted frequency response functions (FRFs) against the FRFs that were measured by conducting impulse hammer tests in various stages of machining a generic curved blade.

Funder

Natural Sciences and Engineering Research Council of Canada

Publisher

ASME International

Subject

Industrial and Manufacturing Engineering,Computer Science Applications,Mechanical Engineering,Control and Systems Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3