Effects on Film Cooling Performance in the Showerhead From Geometric Parameterization of Shaped Hole Designs

Author:

Moore Jacob D.1,Easterby Christopher C.1,Bogard David G.1

Affiliation:

1. Walker Department of Mechanical Engineering, The University of Texas at Austin, Austin, TX 78712

Abstract

Abstract The high heat loads at the leading-edge regions of turbine vanes and blades necessitate the most robust thermal protection, typically accomplished via a dense array of film cooling holes, nicknamed the “showerhead.” Although research has shown that film cooling using shaped holes provides more reliable thermal protection than that using cylindrical holes, the effects on cooling performance from varying the geometric details of the shaped hole design are not well characterized. In this study, adiabatic effectiveness and off-the-wall thermal field measurements were conducted for two shaped hole geometries designed as successors to a baseline hole geometry presented in a previous study. One geometry with a 40% increase in area ratio exhibited only a marginal improvement in adiabatic effectiveness (∼10%). A second design with a 12 deg forward and lateral expansion angle with a breakout area 40% larger performed marginally worse than its matched area ratio counterpart (∼15% lower), suggesting a negative sensitivity to breakout area. Such changes in performance for different shaped hole designs were small compared to the boost in performance gained by switching from a cylindrical hole to a shaped hole, which suggests cooling performance is insensitive to specific shaped hole details provided the exterior coolant flow is well-attached.

Publisher

ASME International

Subject

Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3