Resonance Suppression in Multi-Degree-of-Freedom Rotating Flexible Structures Using Order-Tuned Absorbers

Author:

Gozen Serif1,Olson Brian J.2,Shaw Steven W.3,Pierre Christophe4

Affiliation:

1. Department of Mechanical Engineering, McGill University, Montreal, QC, H3A 2K6, Canada e-mail:

2. Air and Missile Defense Department, Applied Physics Laboratory, Johns Hopkins University, Laurel, MD 20723-6099  e-mail:

3. Department of Mechanical Engineering, Michigan State University, East Lansing, MI 48824-1226  e-mail:

4. Department of Mechanical Engineering, University of Illinois, Urbana, IL 61801  e-mail:

Abstract

This paper considers the dynamic response and order-tuning of vibration absorbers fitted to a rotating flexible structure under traveling wave (TW) engine order excitation. Of specific interest is the extension of previous results on the so-called no-resonance zone, that is, a region in linear tuning parameter space in which the coupled structure/absorber system does not experience resonance over all rotation speeds. The no-resonance feature was shown to exist for cyclic rotating structures with one structural and one absorber degree of freedom (DOF) per sector. This work uses a higher-fidelity structural model to investigate the effects of higher modes on the cyclically-coupled system. It is shown that the no-resonance zone is replaced by a resonance-suppression zone in which one structural mode is suppressed, but higher-order resonances still exist with the addition of the absorbers. The results are general in the sense that one vibration mode can be eliminated using a set of identically-tuned absorbers on a rotating structure with arbitrarily many DOFs per sector.

Publisher

ASME International

Subject

General Engineering

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3