Performance Evaluation of the Thermophotovoltaic-Driven Thermoionic Refrigerator

Author:

Açıkkalp Emin12,Yerel Kandemir Süheyla32,Ahmadi Mohammad H.4

Affiliation:

1. Department of Mechanical Engineering, Engineering Faculty, Bilecik S.E. University, Bilecik 11210, Turkey

2. Energy Technology Application, and Research Center, Bilecik S.E. University, Bilecik 11210, Turkey

3. Department of Industrial Engineering, Engineering Faculty, Bilecik S.E. University, Bilecik 11210, Turkey

4. Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood 3619995161, Iran

Abstract

Abstract In this study, the thermophotovoltaic (TPV)-driven thermionic refrigerator (TIR) is presented as an alternative refrigerator operated by the solar energy. Solar energy is the main energy source and its performance is analyzed. Power output density of the TPV, cooling rate density, COP, exergy destruction rate densities, and exergy efficiencies are the considered parameters. Calculations are performed numerically; results are presented and discussed. The most suitable operation conditions are defined. According to the results, the cooling rate density is 648 W/m2, power output densities are 1189.86 W/m2 and 667.234 W/m2 for the eg = 0.3 eV and eg = 0.4 eV, and the exergy efficiency of the system is about 0.071.

Publisher

ASME International

Subject

Geochemistry and Petrology,Mechanical Engineering,Energy Engineering and Power Technology,Fuel Technology,Renewable Energy, Sustainability and the Environment

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3